Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.094
Filtrar
1.
Int J Med Sci ; 21(5): 784-794, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617006

RESUMO

Introduction: Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder with clinical features of retinal dystrophy, obesity, postaxial polydactyly, renal anomalies, learning disabilities, hypogonadism, and genitourinary abnormalities. Nevertheless, previous studies on the phenotypic traits of BBS heterozygous carriers have generated inconclusive results. The aim of our study was to investigate the impact of BBS heterozygosity on carriers when compared to non-carriers within the Taiwanese population. Materials and Methods: This study follows a hospital-based case-control design. We employed the Taiwan Biobank version 2 (TWBv2) array to identify three specific loci associated with BBS (rs773862084, rs567573386, and rs199910690). In total, 716 patients were included in the case group, and they were compared to a control group of 2,864 patients who lacked BBS alleles. The control group was selected through gender and age matching at a ratio of 1:4. The association between BBS-related loci and comorbidity was assessed using logistic regression models. Results: We found that BBS heterozygous carriers exhibited a significant association with elevated BMI levels, especially the variant rs199910690 in MKS1 (p=0.0037). The prevalence of comorbidities in the carriers' group was not higher than that in the non-carriers' group. Besides, the average values of the biochemistry data showed no significant differences, except for creatinine level. Furthermore, we conducted a BMI-based analysis to identify specific risk factors for chronic kidney disease (CKD). Our findings revealed that individuals carrying the CA/AA genotype of the BBS2 rs773862084 variant or the CT/TT genotype of the MKS1 rs199910690 variant showed a reduced risk of developing CKD, irrespective of their BMI levels. When stratified by BMI level, obese males with the MKS1 rs199910690 variant and obese females with the BBS2 rs773862084 variant exhibited a negative association with CKD development. Conclusion: We found that aside from the association with overweight and obesity, heterozygous BBS mutations did not appear to increase the predisposition of individuals to comorbidities and metabolic diseases. To gain a more comprehensive understanding of the genetic susceptibility associated with Bardet-Biedl Syndrome (BBS), further research is warranted.


Assuntos
Síndrome de Bardet-Biedl , Insuficiência Renal Crônica , Feminino , Masculino , Humanos , Síndrome de Bardet-Biedl/epidemiologia , Síndrome de Bardet-Biedl/genética , Comorbidade , Heterozigoto , Obesidade/epidemiologia , Obesidade/genética , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genética
2.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612648

RESUMO

Obesity and overweight are common and complex conditions influenced by multiple genetic and environmental factors. Several genetic variants located in the genes involved in clock systems and fat taste perception can affect metabolic health. In particular, the polymorphisms in CLOCK and BMAL1 genes were reported to be significantly related to cardiovascular disease, metabolic syndrome, sleep reduction, and evening preference. Moreover, genetic variants in the CD36 gene have been shown to be involved in lipid metabolism, regulation of fat intake, and body weight regulation. The aim of this study is to evaluate, for the first time, the association between variants in some candidate genes (namely, BMAL1 rs7950226 (G>A), CLOCK rs1801260 (A>G), CLOCK rs4864548 (G>A), CLOCK rs3736544 (G>A), CD36 rs1984112 (A>G), CD36 rs1761667 (G>A)) and overweight/obesity (OB) in pregnant women. A total of 163 normal-weight (NW) and 128 OB participants were included. A significant correlation was observed between A-allele in CLOCK rs4864548 and an increased risk of obesity (OR: 1.97; 95% CI 1.22-3.10, p = 0.005). In addition, we found that subjects carrying the haplotype of rs1801260-A, rs4864548-A, and rs3736544-G are likely to be overweight or obese (OR 1.47, 95% CI 1.03-2.09, p = 0.030), compared with those with other haplotypes. Moreover, a significant relation was observed between third-trimester lipid parameters and genetic variants-namely, CD36 rs1984112, CD36 rs1761667, BMAL1 rs7950226, and CLOCK rs1801260. A multivariate logistic regression model revealed that CLOCK rs4864548 A-allele carriage was a strong risk factor for obesity (OR 2.05, 95% CI 1.07-3.93, p = 0.029); on the other hand, greater adherence to Mediterranean diet (OR 0.80, 95% CI 0.65-0.98, p = 0.038) and higher HDL levels (OR 0.96, 95% CI 0.94-0.99, p = 0.021) were related to a reduced risk of obesity. Interestingly, an association between maternal CLOCK rs4864548 and neonatal birthweight was detected (p = 0.025). These data suggest a potential role of the polymorphisms in clock systems and in fat taste perception in both susceptibility to overweight/obesity and influencing the related metabolic traits in pregnant women.


Assuntos
Fatores de Transcrição ARNTL , Sobrepeso , Gravidez , Recém-Nascido , Feminino , Humanos , Sobrepeso/genética , Fatores de Transcrição ARNTL/genética , Gestantes , Obesidade/genética , Alelos , Antígenos CD36/genética
3.
Georgian Med News ; (347): 168-176, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38609136

RESUMO

The idea that obesity and cardiovascular diseases together are considered for a sizable share of adult global morbidity and mortality is supported by epidemiological data. They have intricate systems in which environmental and genetic variables interact, including nutrition. As an environmental component, nutrition has a major and well-known role in managing health and preventing obesity and disorders connected to obesity, such as cardiovascular disease (CVD). Nonetheless, people with the same food pattern but obese exhibit a notable difference in CVD. This variance might be explained by the various genetic polymorphisms which gave rise to the field of nutrigenetics. The discipline known as nutritional genomics, or nutrigenetics, examines and describes gene variants linked to varying reactions to particular nutrients and links these variations to various disorders, including obesity-related cardiovascular disease (CVD). Therefore, tailored nutrition advice depending on a person's genetic background could enhance the results of a particular dietary intervention and offer a novel dietary technique to enhance health by lowering obesity and cardiovascular disease. With these suppositions, it seems reasonable to assume that understanding food and gene interactions will provide more targeted and efficacious dietary treatments in preventing obesity and CVD by nutrigenetics-based personalized nutrition. In addition to elucidating the connection between diet and gene expression and the major nutrition-related genes involved in obesity and CVD, this research seeks to provide a concise summary of the greater significant genes linked to obesity and CVD.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Humanos , Adulto , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/prevenção & controle , Nutrigenômica , Obesidade/genética , Estado Nutricional
4.
Front Immunol ; 15: 1380476, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605957

RESUMO

Obesity and chronic low-grade inflammation, often occurring together, significantly contribute to severe metabolic and inflammatory conditions like type 2 diabetes (T2D), cardiovascular disease (CVD), and cancer. A key player is elevated levels of gut dysbiosis-associated lipopolysaccharide (LPS), which disrupts metabolic and immune signaling leading to metabolic endotoxemia, while short-chain fatty acids (SCFAs) beneficially regulate these processes during homeostasis. SCFAs not only safeguard the gut barrier but also exert metabolic and immunomodulatory effects via G protein-coupled receptor binding and epigenetic regulation. SCFAs are emerging as potential agents to counteract dysbiosis-induced epigenetic changes, specifically targeting metabolic and inflammatory genes through DNA methylation, histone acetylation, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). To assess whether SCFAs can effectively interrupt the detrimental cascade of obesity and inflammation, this review aims to provide a comprehensive overview of the current evidence for their clinical application. The review emphasizes factors influencing SCFA production, the intricate connections between metabolism, the immune system, and the gut microbiome, and the epigenetic mechanisms regulated by SCFAs that impact metabolism and the immune system.


Assuntos
Diabetes Mellitus Tipo 2 , Epigênese Genética , Humanos , Disbiose , Obesidade/genética , Inflamação , Ácidos Graxos Voláteis/metabolismo
5.
Zhongguo Zhen Jiu ; 44(4): 449-454, 2024 Apr 12.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38621733

RESUMO

OBJECTIVES: To observe the effects of moxibustion on intestinal barrier function and Toll-like receptor 4 (TLR4)/nuclear factor-κB p65 (NF-κB p65) signaling pathway in obese rats and explore the mechanism of moxibustion in the intervention of obesity. METHODS: Fifty-five Wistar rats of SPF grade were randomly divided into a normal group (10 rats) and a modeling group (45 rats). In the modeling group, the obesity model was established by feeding high-fat diet. Thirty successfully-modeled rats were randomized into a model group, a moxibustion group, and a placebo-control group, with 10 rats in each one. In the moxibustion group, moxibustion was applied at the site 3 cm to 5 cm far from the surface of "Zhongwan" (CV 12), with the temperature maintained at (46±1 ) ℃. In the placebo-control group, moxibustion was applied at the site 8 cm to 10 cm far from "Zhongwan" (CV 12), with the temperature maintained at (38±1) ℃. The intervention was delivered once daily for 8 weeks in the above two groups. The body mass and food intake of the rats were observed before and after intervention in each group. Using ELISA methool, the levels of serum triacylglycerol (TG), total cholesterol (TC) and lipopolysaccharide (LPS) were detected and the insulin resistance index (HOMA-IR) was calculated. HE staining was used to observe the morphology of colon tissue. The mRNA expression of zonula occludens-1 (ZO-1), Occludin, Claudin-1, TLR4 and NF-κB p65 in the colon tissue was detected by quantitative real-time PCR; and the protein expression of ZO-1, Occludin, Claudin-1, TLR4 and NF-κB p65 was detected by Western blot in the rats of each group. RESULTS: Compared with the normal group, the body mass, food intake, the level of HOMA-IR, and the serum levels of TC, TG and LPS were increased in the rats of the model group (P<0.01); those indexes in the moxibustion group were all reduced when compared with the model group and the placebo-control group respectively (P<0.01, P<0.05). Compared with the normal group, a large number of epithelial cells in the mucosa of colon tissue was damaged, shed, and the inflammatory cells were infiltrated obviously in the interstitium in the rats of the model group. When compared with the model group, in the moxibustion group, the damage of the colon tissue was recovered to various degrees and there were few infiltrated inflammatory cells in the interstitium, while, the epithelial injury of the colon tissue was slightly recovered and the infiltrated inflammatory cells in the interstitium were still seen in the placebo-control group. The mRNA and protein expressions of ZO-1, Occludin and Caudin-1 were decreased in the model group compared with those in the normal group (P<0.01). When compared with the model group and the placebo-control group, the mRNA and protein expressions of these indexes were increased in the moxibustion group (P<0.01, P<0.05). In the model group, the mRNA and protein expressions of TLR4 and NF-κB p65 were increased when compared with those in the normal group (P<0.01), and the mRNA and protein expressions of these indexes were reduced in the moxibustion group when compared with those in the model group and the placebo-control group (P<0.01). CONCLUSIONS: Moxibustion can reduce the body mass and food intake, regulate the blood lipid and improve insulin resistance in the rats of obesity. It may be related to alleviating inflammatory response through improving intestinal barrier function and modulating the intestinal TLR4/NF-κB p65 signaling pathway.


Assuntos
Resistência à Insulina , Moxibustão , Ratos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Ratos Wistar , Receptor 4 Toll-Like/genética , Lipopolissacarídeos/metabolismo , 60435 , Ocludina/metabolismo , Claudina-1/metabolismo , Transdução de Sinais , Obesidade/genética , Obesidade/terapia , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Nat Genet ; 56(4): 579-584, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575728

RESUMO

Obesity is a major risk factor for many common diseases and has a substantial heritable component. To identify new genetic determinants, we performed exome-sequence analyses for adult body mass index (BMI) in up to 587,027 individuals. We identified rare loss-of-function variants in two genes (BSN and APBA1) with effects substantially larger than those of well-established obesity genes such as MC4R. In contrast to most other obesity-related genes, rare variants in BSN and APBA1 were not associated with normal variation in childhood adiposity. Furthermore, BSN protein-truncating variants (PTVs) magnified the influence of common genetic variants associated with BMI, with a common variant polygenic score exhibiting an effect twice as large in BSN PTV carriers than in noncarriers. Finally, we explored the plasma proteomic signatures of BSN PTV carriers as well as the functional consequences of BSN deletion in human induced pluripotent stem cell-derived hypothalamic neurons. Collectively, our findings implicate degenerative processes in synaptic function in the etiology of adult-onset obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Células-Tronco Pluripotentes Induzidas , Hepatopatias , Adulto , Humanos , Diabetes Mellitus Tipo 2/genética , Proteômica , Obesidade/complicações , Obesidade/genética , Predisposição Genética para Doença , Proteínas do Tecido Nervoso/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
7.
Endocrinol Diabetes Metab ; 7(3): e00483, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556726

RESUMO

BACKGROUND: The FTO gene polymorphisms may influence the effects of lifestyle interventions on obesity. The present study aimed to assess the influence of the rs9930506 FTO gene polymorphism on the success of a comprehensive weight loss intervention in male adolescents with overweight and obesity. METHODS: This study was carried out on 96 adolescent boys with overweight and obesity who were randomly assigned to the intervention (n = 53) and control (n = 43) groups. The blood samples of the participants were collected, and the FTO gene was genotyped for the rs9930506 polymorphism. A comprehensive lifestyle intervention including changes in diet and physical activity was performed for 8 weeks in the intervention group. RESULTS: Following the lifestyle intervention, BMI and fat mass decreased significantly in the intervention group compared with the control group (both p < 0.05), while no change was found in weight, height or body muscle percentage between the groups. The participants in the intervention group with the AA/AG genotype and not in carriers of the GG genotype had a significantly higher reduction in BMI (-1.21 vs. 1.87 kg/m2, F = 4.07, p < 0.05) compared with the control group. CONCLUSION: The intervention in individuals with the AA/AG genotype has been significantly effective in weight loss compared with the control group. The intervention had no association effect on anthropometric indices in adolescents with the GG genotype of the FTO rs9930506 polymorphism. TRIAL REGISTRATION: Name of the registry: National Nutrition and Food Technology Research Institute; Trial registration number: IRCT2016020925699N2; Date of registration: 24/04/2016; URL of trial registry record: https://www.irct.ir/trial/21447.


Assuntos
Sobrepeso , Polimorfismo de Nucleotídeo Único , Humanos , Adolescente , Masculino , Sobrepeso/genética , Índice de Massa Corporal , Genótipo , Obesidade/genética , Obesidade/terapia , Redução de Peso/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética
8.
PLoS One ; 19(4): e0300965, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557554

RESUMO

AIM: Our study aims to identify novel non-coding RNA-mRNA regulatory networks associated with ß-cell dysfunction and compensatory responses in obesity-related diabetes. METHODS: Glucose metabolism, islet architecture and secretion, and insulin sensitivity were characterized in C57BL/6J mice fed on a 60% high-fat diet (HFD) or control for 24 weeks. Islets were isolated for whole transcriptome sequencing to identify differentially expressed (DE) mRNAs, miRNAs, IncRNAs, and circRNAs. Regulatory networks involving miRNA-mRNA, lncRNA-mRNA, and lncRNA-miRNA-mRNA were constructed and functions were assessed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. RESULTS: Despite compensatory hyperinsulinemia and a significant increase in ß-cell mass with a slow rate of proliferation, HFD mice exhibited impaired glucose tolerance. In isolated islets, insulin secretion in response to glucose and palmitic acid deteriorated after 24 weeks of HFD. Whole transcriptomic sequencing identified a total of 1324 DE mRNAs, 14 DE miRNAs, 179 DE lncRNAs, and 680 DE circRNAs. Our transcriptomic dataset unveiled several core regulatory axes involved in the impaired insulin secretion in HFD mice, such as miR-6948-5p/Cacna1c, miR-6964-3p/Cacna1b, miR-3572-5p/Hk2, miR-3572-5p/Cckar and miR-677-5p/Camk2d. Additionally, proliferative and apoptotic targets, including miR-216a-3p/FKBP5, miR-670-3p/Foxo3, miR-677-5p/RIPK1, miR-802-3p/Smad2 and ENSMUST00000176781/Caspase9 possibly contribute to the increased ß-cell mass in HFD islets. Furthermore, competing endogenous RNAs (ceRNA) regulatory network involving 7 DE miRNAs, 15 DE lncRNAs and 38 DE mRNAs might also participate in the development of HFD-induced diabetes. CONCLUSIONS: The comprehensive whole transcriptomic sequencing revealed novel non-coding RNA-mRNA regulatory networks associated with impaired insulin secretion and increased ß-cell mass in obesity-related diabetes.


Assuntos
Diabetes Mellitus , MicroRNAs , RNA Longo não Codificante , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Dieta Hiperlipídica/efeitos adversos , RNA Circular/metabolismo , Secreção de Insulina , Sequenciamento do Exoma , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Obesidade/genética , Redes Reguladoras de Genes , Canais de Cálcio Tipo N/metabolismo
9.
PLoS One ; 19(4): e0297905, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557966

RESUMO

PURPOSE: Obesity is a strong risk factor for many diseases, with controversy regarding the cause(s) of tuberculosis (TB) reflected by contradictory findings. Therefore, a larger sample population is required to determine the relationship between obesity and TB, which may further inform treatment. METHODS: Obesity-related indicators and TB mutation data were obtained from a genome-wide association study database, while representative instrumental variables (IVs) were obtained by screening and merging. Causal relationships between exposure factors and outcomes were determined using two-sample Mendelian randomization (MR) analysis. Three tests were used to determine the representativeness and stability of the IVs, supported by sensitivity analysis. RESULTS: Initially, 191 single nucleotide polymorphisms were designated as IVs by screening, followed by two-sample MR analysis, which revealed the causal relationship between waist circumference [odds ratio (OR): 2.13 (95% confidence interval (CI): 1.19-3.80); p = 0.011] and TB. Sensitivity analysis verified the credibility of the IVs, none of which were heterogeneous or horizontally pleiotropic. CONCLUSION: The present study determined the causal effect between waist circumference and TB by two-sample MR analysis and found both to be likely to be potential risk factors.


Assuntos
Estudo de Associação Genômica Ampla , Tuberculose , Humanos , Análise da Randomização Mendeliana , Obesidade/complicações , Obesidade/genética , Tuberculose/complicações , Tuberculose/epidemiologia , Tuberculose/genética , Fatores de Risco , Polimorfismo de Nucleotídeo Único
10.
Nat Commun ; 15(1): 2825, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561362

RESUMO

Ten-eleven translocation (TET) 2 is an enzyme that catalyzes DNA demethylation to regulate gene expression by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine, functioning as an essential epigenetic regulator in various biological processes. However, the regulation and function of TET2 in adipocytes during obesity are poorly understood. In this study, we demonstrate that leptin, a key adipokine in mammalian energy homeostasis regulation, suppresses adipocyte TET2 levels via JAK2-STAT3 signaling. Adipocyte Tet2 deficiency protects against high-fat diet-induced weight gain by reducing leptin levels and further improving leptin sensitivity in obese male mice. By interacting with C/EBPα, adipocyte TET2 increases the hydroxymethylcytosine levels of the leptin gene promoter, thereby promoting leptin gene expression. A decrease in adipose TET2 is associated with obesity-related hyperleptinemia in humans. Inhibition of TET2 suppresses the production of leptin in mature human adipocytes. Our findings support the existence of a negative feedback loop between TET2 and leptin in adipocytes and reveal a compensatory mechanism for the body to counteract the metabolic dysfunction caused by obesity.


Assuntos
Dioxigenases , Leptina , Animais , Humanos , Masculino , Camundongos , Adipócitos/metabolismo , Peso Corporal , Dioxigenases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retroalimentação , Leptina/metabolismo , Mamíferos/metabolismo , Obesidade/genética , Obesidade/metabolismo
11.
Proc Natl Acad Sci U S A ; 121(16): e2318935121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588421

RESUMO

Glucose is required for generating heat during cold-induced nonshivering thermogenesis in adipose tissue, but the regulatory mechanism is largely unknown. CREBZF has emerged as a critical mechanism for metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD). We investigated the roles of CREBZF in the control of thermogenesis and energy metabolism. Glucose induces CREBZF in human white adipose tissue (WAT) and inguinal WAT (iWAT) in mice. Lys208 acetylation modulated by transacetylase CREB-binding protein/p300 and deacetylase HDAC3 is required for glucose-induced reduction of proteasomal degradation and augmentation of protein stability of CREBZF. Glucose induces rectal temperature and thermogenesis in white adipose of control mice, which is further potentiated in adipose-specific CREBZF knockout (CREBZF FKO) mice. During cold exposure, CREBZF FKO mice display enhanced thermogenic gene expression, browning of iWAT, and adaptive thermogenesis. CREBZF associates with PGC-1α to repress thermogenic gene expression. Expression levels of CREBZF are negatively correlated with UCP1 in human adipose tissues and increased in WAT of obese ob/ob mice, which may underscore the potential role of CREBZF in the development of compromised thermogenic capability under hyperglycemic conditions. Our results reveal an important mechanism of glucose sensing and thermogenic inactivation through reversible acetylation.


Assuntos
Tecido Adiposo Marrom , Glucose , Camundongos , Humanos , Animais , Glucose/metabolismo , Tecido Adiposo Marrom/metabolismo , Acetilação , Tecido Adiposo Branco/metabolismo , Metabolismo Energético , Obesidade/genética , Obesidade/metabolismo , Termogênese/genética , Camundongos Endogâmicos C57BL , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
12.
BMC Res Notes ; 17(1): 106, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622664

RESUMO

OBJECTIVE: Pancreatic cancer (PC) originates and progresses with genetic mutations in various oncogenes and suppressor genes, notably KRAS, CDKN2A, TP53, and SMAD4, prevalent across diverse PC cells. In addition to genetic mutations/deletions, persistent exposure to high-risk factors, including obesity, induces whole-genome scale epigenetic alterations contributing to malignancy. However, the impact of obesity on DNA methylation in the presymptomatic stage, particularly in genes prone to PC mutation, remains uncharacterized. RESULTS: We analyzed the methylation levels of 197 loci in six genes (KRAS, CDKN2A, TP53, SMAD4, GNAS and RNF43) using Illumina Mouse Methylation BeadChip array (280 K) data from pancreatic exocrine cells obtained from high-fat-diet (HFD) induced obese mice. Results revealed no significant differences in methylation levels in loci between HFD- and normal-fat-diet (NFD)-fed mice, except for RNF43, a negative regulator of Wnt signaling, which showed hypermethylation in three loci. These findings indicate that, in mouse pancreatic exocrine cells, high-fat dietary obesity induced aberrant DNA methylation in RNF43 but not in other frequently mutated PC-related genes.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Animais , Camundongos , Epigênese Genética , Camundongos Obesos , Mutação , Obesidade/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética
13.
Sci Adv ; 10(16): eadj1987, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640244

RESUMO

It remains unknown whether adiposity subtypes are differentially associated with colorectal cancer (CRC). To move beyond single-trait anthropometric indicators, we derived four multi-trait body shape phenotypes reflecting adiposity subtypes from principal components analysis on body mass index, height, weight, waist-to-hip ratio, and waist and hip circumference. A generally obese (PC1) and a tall, centrally obese (PC3) body shape were both positively associated with CRC risk in observational analyses in 329,828 UK Biobank participants (3728 cases). In genome-wide association studies in 460,198 UK Biobank participants, we identified 3414 genetic variants across four body shapes and Mendelian randomization analyses confirmed positive associations of PC1 and PC3 with CRC risk (52,775 cases/45,940 controls from GECCO/CORECT/CCFR). Brain tissue-specific genetic instruments, mapped to PC1 through enrichment analysis, were responsible for the relationship between PC1 and CRC, while the relationship between PC3 and CRC was predominantly driven by adipose tissue-specific genetic instruments. This study suggests distinct putative causal pathways between adiposity subtypes and CRC.


Assuntos
Neoplasias Colorretais , Somatotipos , Humanos , Estudo de Associação Genômica Ampla , Neoplasias Colorretais/genética , Obesidade/genética , Fenótipo , Variação Genética , Fatores de Risco
14.
Open Vet J ; 14(1): 428-437, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633156

RESUMO

Background: Obesity is one of the most prevalent and perilous health affairs. Male obesity-associated secondary hypogonadism (MOSH) is one of many of its complexities, which is mounting in parallel with the aggravation of obesity. Magnetic nanoparticles seem to be an advanced favorable trend in multiple biomedical fields. Aim: In this study, we explore the therapeutic effects of superparamagnetic iron oxide nanoparticles (SPIONs) coated with carboxymethyl cellulose (CMC) on an obese male rat model with MOSH syndrome, comparing their impacts with a well-known anti-obesity medication (Orlistat). Methods: 42 male albino rats split into 7 equal groups: 1-negative control: nonobese, untreated; 35 rats fed the high fat-high fructose (HFHF) diet for a period of 12 weeks. Obese rats splitted into 6 equal groups; 2-positive control: obese untreated; 3-obese given Orlistat (30 mg/kg); 4-obese given CMC-SPIONs (25 mgFe/kg); 5-obese given CMC-SPIONs (50 mgFe/kg); 6-obese given CMC-SPIONs(25 mgFe/kg) + Orlistat (30 mg/kg), 7-obese given CMC-SPIONs (50 mgFe/kg) + Orlistat (30 mg/kg); all treatments given orally for 4 weeks. During sacrifice, blood serum and sectioned hypothalamic, pituitary, testicular, and adipose tissues were collected for biochemical and biomolecular assessments. Results: The HFHF diet for 12 weeks resulted in a significant upsurge in body weight, body mass index, serum fasting glucose, insulin resistance, TAG, total cholesterol, and LDL-c; HDL-c was dropped. Serum FSH, LH, and testosterone values declined. A significant disorder in expression levels of genes regulating the hypothalamic-pituitary-testicular-axis pathway. Hypothalamic GnRH, Kisspeptin-1, Kisspeptin-r1, and Adipo-R1 values declined. GnIH and Leptin-R1 values raised up. Pituitary GnRH-R values declined. Testicular tissue STAR, HSD17B3, and CYP19A1 values declined. Adipose tissue adiponectin declined, while leptin raised up. CMC-SPIONs 25-50 mg could modulate the deranged biochemical parameters and correct the deranged expression levels of all previous genes. Co-treatments revealed highly synergistic effects on all parameters. Overall, CMC-SPIONs have significant efficiency whether alone or with Orlisat in limiting obesity and consequence subfertility. Conclusion: CMC-SPIONs act as an incoming promising contender for obesity and MOSH disorders management, and need more studies on their mechanisms.


Assuntos
Hipogonadismo , Obesidade , Doenças dos Roedores , Ratos , Masculino , Animais , Leptina/metabolismo , Leptina/uso terapêutico , Orlistate/metabolismo , Orlistate/farmacologia , Orlistate/uso terapêutico , Testículo/metabolismo , Obesidade/genética , Obesidade/metabolismo , Obesidade/veterinária , Hipogonadismo/metabolismo , Hipogonadismo/veterinária , Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/uso terapêutico , Nanopartículas Magnéticas de Óxido de Ferro
15.
Metab Syndr Relat Disord ; 22(3): 232-239, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603765

RESUMO

Background: This study investigated the association of four metabolic obesity phenotypes with incident coronary artery disease and stroke in a large-scale, community population-based, prospective Korean cohort observed for over 10 years. Methods: The study participants included 7374 adults aged 40-69 years, drawn from the Korean Genome and Epidemiology Study. Participants with different metabolic obesity phenotypes were categorized according to body weight and metabolic health status into four groups: metabolically healthy nonobese (MHNO), metabolically healthy obese (MHO), metabolically unhealthy nonobese (MUHNO), and metabolically unhealthy obese (MUHO). Combined cardiovascular events were defined as coronary artery disease and stroke. We used multivariate Cox proportional hazards regression models to prospectively assess hazard ratios (HRs) with 95% confidence intervals (CIs) for incident coronary artery disease or stroke over 10 years after the baseline survey. Results: During the follow-up period, newly developed coronary artery disease, stroke, and combined cardiovascular events were diagnosed in 151 (2.0%), 137 (1.9%), and 283 (3.8%) participants, respectively. After adjusting for confounding variables, the HRs (95% CIs) for incident combined cardiovascular events were 1.81 (1.34-2.46) in the MUHO group, 1.29 (0.92-1.81) in the MUHNO group, and 1.21 (0.81-1.79) in the MHO group compared with those in the MHNO group. Conclusions: This study revealed distinct risks associated with four metabolic obesity phenotypes concerning incident coronary artery disease and stroke. After adjusting for potential confounding variables, the results indicated that MUHO, but not MUHNO or MHO, showed a higher risk of developing coronary artery disease and stroke than MHNO.


Assuntos
Doença da Artéria Coronariana , Síndrome Metabólica , Acidente Vascular Cerebral , Adulto , Pessoa de Meia-Idade , Humanos , Idoso , Fatores de Risco , Doença da Artéria Coronariana/epidemiologia , Estudos Prospectivos , Obesidade/complicações , Obesidade/epidemiologia , Obesidade/genética , Fenótipo , Acidente Vascular Cerebral/epidemiologia , República da Coreia/epidemiologia , Índice de Massa Corporal
16.
Nat Genet ; 56(4): 557, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622335
17.
Front Endocrinol (Lausanne) ; 15: 1334342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469147

RESUMO

Early-onset obesity is a rising health concern influenced by heredity. However, many monogenic obesity variants (MOVs) remain to be discovered due to differences in ethnicity and culture. Additionally, patients with known MOVs have shown limited weight loss after bariatric surgery, suggesting it can be used as a screening tool for new candidates. In this study, we performed whole-exome sequencing (WES) combined with postoperative data to detect candidate MOVs in a cohort of 62 early-onset obesity and 9 late-onset obesity patients. Our findings demonstrated that patients with early-onset obesity preferred a higher BMI and waist circumference (WC). We confirmed the efficacy of the method by identifying a mutation in known monogenic obesity gene, PCSK1, which resulted in less weight loss after surgery. 5 genes were selected for further verification, and a frameshift variant in CAMKK2 gene: NM_001270486.1, c.1614dup, (p. Gly539Argfs*3) was identified as a novel candidate MOV. This mutation influenced the improvement of metabolism after bariatric surgery. In conclusion, our data confirm the efficacy of WES combined with postoperative data in detecting novel candidate MOVs and c.1614dup (CAMKK2) might be a promising MOV, which needs further confirmation. This study enriches the human monogenic obesity mutation database and provides a scientific basis for clinically accurate diagnosis and treatment.


Assuntos
Mutação da Fase de Leitura , Obesidade , Humanos , Sequenciamento do Exoma , Obesidade/genética , Obesidade/cirurgia , Mutação , Redução de Peso , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética
18.
PLoS One ; 19(3): e0293510, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457457

RESUMO

Mendelian randomization (MR) is an epidemiological framework using genetic variants as instrumental variables (IVs) to examine the causal effect of exposures on outcomes. Statistical methods based on unidirectional MR (UMR) are widely used to estimate the causal effects of exposures on outcomes in observational studies. To estimate the bidirectional causal effects between two phenotypes, investigators have naively applied UMR methods separately in each direction. However, bidirectional causal effects between two phenotypes create a feedback loop that biases the estimation when UMR methods are naively applied. To overcome this limitation, we proposed two novel approaches to estimate bidirectional causal effects using MR: BiRatio and BiLIML, which are extensions of the standard ratio, and limited information maximum likelihood (LIML) methods, respectively. We compared the performance of the two proposed methods with the naive application of UMR methods through extensive simulations of several scenarios involving varying numbers of strong and weak IVs. Our simulation results showed that when multiple strong IVs are used, the proposed methods provided accurate bidirectional causal effect estimation in terms of median absolute bias and relative median absolute bias. Furthermore, compared to the BiRatio method, the BiLIML method provided a more accurate estimation of causal effects when weak IVs were used. Therefore, based on our simulations, we concluded that the BiLIML should be used for bidirectional causal effect estimation. We applied the proposed methods to investigate the potential bidirectional relationship between obesity and diabetes using the data from the Multi-Ethnic Study of Atherosclerosis cohort. We used body mass index (BMI) and fasting glucose (FG) as measures of obesity and type 2 diabetes, respectively. Our results from the BiLIML method revealed the bidirectional causal relationship between BMI and FG in across all racial populations. Specifically, in the White/Caucasian population, a 1 kg/m2 increase in BMI increased FG by 0.70 mg/dL (95% confidence interval [CI]: 0.3517-1.0489; p = 8.43×10-5), and 1 mg/dL increase in FG increased BMI by 0.10 kg/m2 (95% CI: 0.0441-0.1640; p = 6.79×10-4). Our study provides novel findings and quantifies the effect sizes of the bidirectional causal relationship between BMI and FG. However, further studies are needed to understand the biological and functional mechanisms underlying the bidirectional pathway.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Humanos , Índice de Massa Corporal , Diabetes Mellitus Tipo 2/genética , Análise da Randomização Mendeliana , Obesidade/genética , Jejum , Estudo de Associação Genômica Ampla
19.
Nutrients ; 16(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542788

RESUMO

Integrated omics-based platforms from epigenomics and proteomics technologies are used to identify several important mechanisms in obesity etiology, food components, dietary intake, regulation of biological pathways, and potential new intervention targets. Therefore, this study aimed to analyze whether dietary factors involved in the methylation of tumor necrosis factor (TNF)-α are implicated in differential protein expression in people with normal weight and obesity. METHODS: The participants were classified into the non-obese (N = 100) and obese (N = 133) groups. DNA methylation levels of the TNF-alpha gene and proteomics were analyzed using the pyrosequencing method and LC-MS-MS, respectively. RESULTS: Comparison between geometric means of DNA methylation of TNF-α showed lower levels in subjects with obesity than in those without obesity (p < 0.05). There were associations between dietary factors and some metabolic syndrome components and TNF-α DNA methylation levels. Proteomic analysis showed important signaling pathways related to obesity, with 95 significantly downregulated proteins and 181 upregulated proteins in the non-obese group compared with the obese group. CONCLUSION: This study shows an association between the dietary factors involved in the methylation of TNF-α and differential protein expression related to obesity. However, a large sample size in future studies is required to confirm our results.


Assuntos
Proteoma , Fator de Necrose Tumoral alfa , Masculino , Humanos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteoma/metabolismo , Metilação de DNA , Proteômica , Obesidade/genética , Obesidade/patologia
20.
CNS Neurosci Ther ; 30(3): e14700, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38544384

RESUMO

BACKGROUND: Perinatal exposure to maternal obesity predisposes offspring to develop obesity later in life. Immune dysregulation in the hypothalamus, the brain center governing energy homeostasis, is pivotal in obesity development. This study aimed to identify key candidate genes associated with the risk of offspring obesity in maternal obesity. METHODS: We obtained obesity-related datasets from the Gene Expression Omnibus (GEO) database. GSE135830 comprises gene expression data from the hypothalamus of mouse offspring in a maternal obesity model induced by a high-fat diet model (maternal high-fat diet (mHFD) group and maternal chow (mChow) group), while GSE127056 consists of hypothalamus microarray data from young adult mice with obesity (high-fat diet (HFD) and Chow groups). We identified differentially expressed genes (DEGs) and module genes using Limma and weighted gene co-expression network analysis (WGCNA), conducted functional enrichment analysis, and employed a machine learning algorithm (least absolute shrinkage and selection operator (LASSO) regression) to pinpoint candidate hub genes for diagnosing obesity-associated risk in offspring of maternal obesity. We constructed a nomogram receiver operating characteristic (ROC) curve to evaluate the diagnostic value. Additionally, we analyzed immune cell infiltration to investigate immune cell dysregulation in maternal obesity. Furthermore, we verified the expression of the candidate hub genes both in vivo and in vitro. RESULTS: The GSE135830 dataset revealed 2868 DEGs between the mHFD offspring and the mChow group and 2627 WGCNA module genes related to maternal obesity. The overlap of DEGs and module genes in the offspring with maternal obesity in GSE135830 primarily enriched in neurodevelopment and immune regulation. In the GSE127056 dataset, 133 DEGs were identified in the hypothalamus of HFD-induced adult obese individuals. A total of 13 genes intersected between the GSE127056 adult obesity DEGs and the GSE135830 maternal obesity module genes that were primarily enriched in neurodevelopment and the immune response. Following machine learning, two candidate hub genes were chosen for nomogram construction. Diagnostic value evaluation by ROC analysis determined Sytl4 and Kncn2 as hub genes for maternal obesity in the offspring. A gene regulatory network with transcription factor-miRNA interactions was established. Dysregulated immune cells were observed in the hypothalamus of offspring with maternal obesity. Expression of Sytl4 and Kncn2 was validated in a mouse model of hypothalamic inflammation and a palmitic acid-stimulated microglial inflammation model. CONCLUSION: Two candidate hub genes (Sytl4 and Kcnc2) were identified and a nomogram was developed to predict obesity risk in offspring with maternal obesity. These findings offer potential diagnostic candidate genes for identifying obesity-associated risks in the offspring of obese mothers.


Assuntos
MicroRNAs , Obesidade Materna , Humanos , Gravidez , Adulto Jovem , Feminino , Animais , Camundongos , Obesidade/genética , Biologia Computacional , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...